Exploring secondary-sphere interactions in Fe–NxHy complexes relevant to N2 fixation† †Electronic supplementary information (ESI) available: Synthetic procedures, spectroscopic data, reactivity studies, computational studies, crystallographic information. CCDC 1511362 (1′), 1511363 (2′), 1511369 (3), 1511371 (3′), 1511365 (4), 1511368 (5), 1511367 (6), 1511364 (6′), 1511366 and 1511370 contain supplementary crystallographic data for this paper. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc04805f Click here for additional data file. Click here for additional data file.

نویسندگان

  • Sidney E. Creutz
  • Jonas C. Peters
چکیده

Hydrogen bonding and other types of secondary-sphere interactions are ubiquitous in metalloenzyme active sites and are critical to the transformations they mediate. Exploiting secondary sphere interactions in synthetic catalysts to study the role(s) they might play in biological systems, and to develop increasingly efficient catalysts, is an important challenge. Whereas model studies in this broad context are increasingly abundant, as yet there has been relatively little progress in the area of synthetic catalysts for nitrogen fixation that incorporate secondary sphere design elements. Herein we present our first study of Fe–NxHy complexes supported by new tris(phosphine)silyl ligands, abbreviated as [SiP NMe 3 ] and [SiP 2 P ], that incorporate remote tertiary amine hydrogen-bond acceptors within a tertiary phosphine/amine 6-membered ring. These remote amine sites facilitate hydrogen-bonding interactions via a boat conformation of the 6-membered ring when certain nitrogenous substrates (e.g., NH3 and N2H4) are coordinated to the apical site of a trigonal bipyramidal iron complex, and adopt a chair conformation when no H-bonding is possible (e.g., N2). Countercation binding at the cyclic amine is also observed for anionic {Fe–N2} complexes. Reactivity studies in the presence of proton/electron sources show that the incorporated amine functionality leads to rapid generation of catalytically inactive Fe–H species, thereby substantiating a hydride termination pathway that we have previously proposed deactivates catalysts of the type [EP3]FeN2 (E 1⁄4 Si, C).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017